Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Arch Virol ; 169(5): 110, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664287

ABSTRACT

Advancements in high-throughput sequencing and the development of new bioinformatics tools for large-scale data analysis play a crucial role in uncovering virus diversity and enhancing our understanding of virus evolution. The discovery of the ormycovirus clades, a group of RNA viruses that are phylogenetically distinct from all known Riboviria members and are found in fungi, highlights the value of these tools for the discovery of novel viruses. The aim of this study was to examine viral populations in fungal hosts to gain insights into the diversity, evolution, and classification of these viruses. Here, we report the molecular characterization of a newly discovered ormycovirus, which we have named "Hortiboletus rubellus ormycovirus 1" (HrOMV1), that was found in the ectomycorrhizal fungus Hortiboletus rubellus. The bipartite genome of HrOMV1, whose nucleotide sequence was determined by HTS and RLM-RACE, consists of two RNA segments (RNA1 and RNA2) that exhibit similarity to those of previously studied ormycoviruses in their organization and the proteins they encode. The presence of upstream, in-frame AUG triplets in the 5' termini of both RNA segments suggests that HrOMV1, like certain other ormycoviruses, employs a non-canonical translation initiation strategy. Phylogenetic analysis showed that HrOMV1 is positioned within the gammaormycovirus clade. Its putative RNA-dependent RNA polymerase (RdRp) exhibits sequence similarity to those of other gammaormycovirus members, the most similarity to that of Termitomyces ormycovirus 1, with 33.05% sequence identity. This protein was found to contain conserved motifs that are crucial for RNA replication, including the distinctive GDQ catalytic triad observed in gammaormycovirus RdRps. The results of this study underscore the significance of investigating the ecological role of mycoviruses in mycorrhizal fungi. This is the first report of an ormycovirus infecting a member of the ectomycorrhizal genus Hortiboletus.


Subject(s)
Genome, Viral , Mycorrhizae , Phylogeny , RNA Viruses , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Mycorrhizae/genetics , Mycorrhizae/virology , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , RNA, Viral/genetics , High-Throughput Nucleotide Sequencing , Viral Proteins/genetics , Open Reading Frames , Base Sequence
2.
Viruses ; 16(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675938

ABSTRACT

Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal viruses are common in filamentous fungi, and some of them can affect the growth and development of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing. The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel viruses or viral fragments were characterized from the four species of macrofungi. Based on the phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders: Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were widely distributed among the studied species. Furthermore, the number and overall abundance of viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes versicolor, significantly contributing to research on mycoviruses in macrofungi.


Subject(s)
Fungal Viruses , Phylogeny , Virome , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Genome, Viral , China , Trametes/genetics , Trametes/classification , Trametes/virology
3.
Viruses ; 16(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675951

ABSTRACT

Members of the genus Armillaria are widespread forest pathogens against which effective protection has not yet been developed. Due to their longevity and the creation of large-scale cloning of Armillaria individuals, the use of mycoviruses as biocontrol agents (BCAs) against these pathogens could be an effective alternative. This work describes the detection and characterization of viruses in Armillaria spp. collected in the Czech Republic through the application of stranded total RNA sequencing. A total of five single-stranded RNA viruses were detected in Armillaria ostoyae and A. cepistipes, including viruses of the family Tymoviridae and four viruses belonging to the recently described "ambivirus" group with a circular ambisense genome arrangement. Both hammerhead (HHRz) and hairpin (HpRz) ribozymes were detected in all the ambiviricot sequences. Armillaria viruses were compared through phylogenetic analysis and confirmed their specific host by direct RT-PCR. One virus appears to infect both Armillaria species, suggesting the occurrence of interspecies transmission in nature.


Subject(s)
Armillaria , Fungal Viruses , Genome, Viral , Phylogeny , RNA, Viral , Czech Republic , Armillaria/genetics , Armillaria/virology , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , RNA, Viral/genetics , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Plant Diseases/virology , Plant Diseases/microbiology , Sequence Analysis, RNA
4.
Front Cell Infect Microbiol ; 13: 1229859, 2023.
Article in English | MEDLINE | ID: mdl-37662006

ABSTRACT

Suillus luteus is a widespread edible ectomycorrhizal fungus that holds significant importance in both ecological and economic value. Mycoviruses are ubiquitous infectious agents hosted in different fungi, with some known to exert beneficial or detrimental effects on their hosts. However, mycoviruses hosted in ectomycorrhizal fungi remain poorly studied. To address this gap in knowledge, we employed next-generation sequencing (NGS) to investigate the virome of S. luteus. Using BLASTp analysis and phylogenetic tree construction, we identified 33 mycovirus species, with over half of them belonging to the phylum Lenarviricota, and 29 of these viruses were novel. These mycoviruses were further grouped into 11 lineages, with the discovery of a new negative-sense single-stranded RNA viral family in the order Bunyavirales. In addition, our findings suggest the occurrence of cross-species transmission (CST) between the fungus and ticks, shedding light on potential evolutionary events that have shaped the viral community in different hosts. This study is not only the first study to characterize mycoviruses in S. luteus but highlights the enormous diversity of mycoviruses and their implications for virus evolution.


Subject(s)
Basidiomycota , Fungal Viruses , Basidiomycota/virology , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Metagenomics , Biological Evolution , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification
5.
Arch Virol ; 168(9): 226, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561160

ABSTRACT

The complete genome of a novel mycovirus, Colletotrichum curcumae narnavirus 1 (CcNV1), derived from the phytopathogenic fungus Colletotrichum curcumae strain 780-2T, was sequenced and analyzed. The full sequence of CcNV1 is 3,374 nucleotides in length and contains a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) of 1,087 amino acids with a molecular mass of 124.2 kDa that shares the closest similarity with that of Monilinia narnavirus H (53.02% identity). RdRp phylogeny analysis showed that CcNV1 is a new member of the proposed genus "Betanarnavirus" within the family Narnaviridae. This is the first report of a novel narnavirus infecting the phytopathogenic fungus C. curcumae, the causal agent of leaf blight of Curcuma wenyujin.


Subject(s)
Colletotrichum , Fungal Viruses , RNA Viruses , Colletotrichum/virology , Fungal Viruses/isolation & purification , Genome, Viral , Open Reading Frames , Phylogeny , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics
6.
Virology ; 582: 71-82, 2023 05.
Article in English | MEDLINE | ID: mdl-37030155

ABSTRACT

Incidence and banding patterns of virus-like dsRNA elements in 215 Chinese genetically diverse Lentinula edodes strains collected from wide geographic distribution (or producing areas) were first investigated, and 17 viruses were identified including eight novel viruses. The results revealed a 63.3% incidence of dsRNA elements in the cultivated strains and a 67.2% incidence in the wild strains. A total of 10 distinguishable dsRNAs ranging from 0.6 to 12 kbp and 12 different dsRNA patterns were detected in the positive strains. The molecular information of these dsRNA elements was characterized, and the molecular information of the other 12 different viral sequences with (+) ssRNA genome was revealed in four L. edodes strains with complex dsRNA banding patterns. RT-PCR was also done to verify the five dsRNA viruses and 12 (+) ssRNA ones. The results presented may enrich our understanding of L. edodes virus diversity, and will promote further research on virus-host interactions. IMPORTANCE: Viral infections involve complicated interactions including benign, harmful or possibly beneficial to hosts. Sometimes environment could lead to a transition in lifestyles from persistent to acute, resulting in a disease phenotype. The quality of spawn, such as the vulnerability to infection of viruses, is therefore important for mushroom production. Lentinula edodes, a wood rot basidiomycete fungus, was widely cultivated in the world for its edible and medicinal properties. In this study, the profile of dsRNA elements from Chinese genetically diverse L. edodes strains collected from wide geographic distribution or producing areas was first investigated. The molecular information of the dsRNA elements was characterized. Additionally, 12 different viral sequences with (+) ssRNA genome from four L. edodes strains with complex dsRNA banding patterns were identified. The results presented here will broaden our knowledge about mushroom viruses, and promote further studies of L. edodes production and the interaction between viruses and L. edodes.


Subject(s)
Fungal Viruses , Shiitake Mushrooms , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Phenotype , Prevalence , RNA, Double-Stranded/genetics , Shiitake Mushrooms/genetics , Shiitake Mushrooms/virology , China
7.
Front Cell Infect Microbiol ; 12: 913619, 2022.
Article in English | MEDLINE | ID: mdl-35846770

ABSTRACT

Diplodia seriata in the family Botryosphaeriaceae is a cosmopolitan phytopathogenic fungus and is responsible for causing cankers, fruit rot and leaf spots on economically important plants. In this study, we characterized the virome of a single Pakistani strain (L3) of D. seriata. Several viral-like contig sequences were obtained via a previously conducted next-generation sequencing analysis. Multiple infection of the L3 strain by eight RNA mycoviruses was confirmed through RT-PCR using total RNA samples extracted from this strain; the entire genomes were determined via Sanger sequencing of RT-PCR and RACE clones. A BLAST search and phylogenetic analyses indicated that these eight mycoviruses belong to seven different viral families. Four identified mycoviruses belong to double-stranded RNA viral families, including Polymycoviridae, Chrysoviridae, Totiviridae and Partitiviridae, and the remaining four identified mycoviruses belong to single-stranded RNA viral families, i.e., Botourmiaviridae, and two previously proposed families "Ambiguiviridae" and "Splipalmiviridae". Of the eight, five mycoviruses appear to represent new virus species. A morphological comparison of L3 and partially cured strain L3ht1 suggested that one or more of the three viruses belonging to Polymycoviridae, "Splipalmiviridae" and "Ambiguiviridae" are involved in the irregular colony phenotype of L3. To our knowledge, this is the first report of diverse virome characterization from D. seriata.


Subject(s)
Ascomycota , Fungal Viruses , RNA Viruses , Ascomycota/virology , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Genome, Viral , Pakistan , Phylogeny , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Double-Stranded/genetics , RNA, Viral/genetics
8.
J Virol ; 96(9): e0029622, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35446143

ABSTRACT

RNA viruses usually have linear genomes and are encapsidated by their own capsids. Here, we newly identified four mycoviruses and two previously reported mycoviruses (a fungal reovirus and a botybirnavirus) in the hypovirulent strain SCH941 of Sclerotinia sclerotiorum. One of the newly discovered mycoviruses, Sclerotinia sclerotiorum yadokarivirus 1 (SsYkV1), with a nonsegmented positive-sense single-stranded RNA (+ssRNA) genome, was molecularly characterized. SsYkV1 is 5,256 nucleotides (nt) in length, excluding the poly(A) structure, and has a large open reading frame that putatively encodes a polyprotein with the RNA-dependent RNA polymerase (RdRp) domain and a 2A-like motif. SsYkV1 was phylogenetically positioned into the family Yadokariviridae and was most closely related to Rosellinia necatrix yadokarivirus 2 (RnYkV2), with 40.55% identity (78% coverage). Although SsYkV1 does not encode its own capsid protein, the RNA and RdRp of SsYkV1 are trans-encapsidated in virions of Sclerotinia sclerotiorum botybirnavirus 3 (SsBV3), a bisegmented double-stranded RNA (dsRNA) mycovirus within the genus Botybirnavirus. In this way, SsYkV1 likely replicates inside the heterocapsid comprised of the SsBV3 capsid protein, like a dsRNA virus. SsYkV1 has a limited impact on the biological features of S. sclerotiorum. This study represents an example of a yadokarivirus trans-encapsidated by an unrelated dsRNA virus, which greatly deepens our knowledge and understanding of the unique life cycles of RNA viruses. IMPORTANCE RNA viruses typically encase their linear genomes in their own capsids. However, a capsidless +ssRNA virus (RnYkV1) highjacks the capsid of a nonsegmented dsRNA virus for the trans-encapsidation of its own RNA and RdRp. RnYkV1 belongs to the family Yadokariviridae, which already contains more than a dozen mycoviruses. However, it is unknown whether other yadokariviruses except RnYkV1 are also hosted by a heterocapsid, although dsRNA viruses with capsid proteins were detected in fungi harboring yadokarivirus. It is noteworthy that almost all presumed partner dsRNA viruses of yadokariviruses belong to the order Ghabrivirales (most probably a totivirus or toti-like virus). Here, we found a capsidless +ssRNA mycovirus, SsYkV1, from hypovirulent strain SCH941 of S. sclerotiorum, and the RNA and RdRp of this mycovirus are trans-encapsidated in virions of a bisegmented dsRNA virus within the free-floating genus Botybirnavirus. Our results greatly expand our knowledge of the unique life cycles of RNA viruses.


Subject(s)
Ascomycota , Fungal Viruses , RNA Viruses , Ascomycota/virology , Capsid Proteins/genetics , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/metabolism , Genome, Viral/genetics , Open Reading Frames , Phylogeny , RNA Viruses/chemistry , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Virus Replication/physiology
9.
Viruses ; 14(1)2022 01 14.
Article in English | MEDLINE | ID: mdl-35062353

ABSTRACT

A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.


Subject(s)
Botrytis/virology , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Liliaceae/microbiology , Botrytis/isolation & purification , Coinfection/microbiology , Coinfection/virology , Fungal Viruses/genetics , Fusarium/virology , Genome, Viral , High-Throughput Nucleotide Sequencing , Liliaceae/genetics , Plant Diseases/virology , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Sequence Analysis, RNA , Viral Proteins/genetics
10.
Viruses ; 13(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34960726

ABSTRACT

Wheat viruses including wheat streak mosaic virus, Triticum mosaic virus, and barley yellow dwarf virus cost substantial losses in crop yields every year. Although there have been extensive studies conducted on these known wheat viruses, currently, there is limited knowledge about all components of the wheat (Triticum aestivum L.) virome. Here, we determined the composition of the wheat virome through total RNA deep sequencing of field-collected leaf samples. Sequences were de novo assembled after removing the host reads, and BLASTx searches were conducted. In addition to the documented wheat viruses, novel plant and fungal-associated viral sequences were identified. We obtained the full genome sequence of the first umbra-like associated RNA virus tentatively named wheat umbra-like virus in cereals. Moreover, a novel bi-segmented putative virus tentatively named wheat-associated vipovirus sharing low but significant similarity with both plant and fungal-associated viruses was identified. Additionally, a new putative fungal-associated tobamo-like virus and novel putative Mitovirus were discovered in wheat samples. The discovery and characterization of novel viral sequences associated with wheat is important to determine if these putative viruses may pose a threat to the wheat industry or have the potential to be used as new biological control agents for wheat pathogens either as wild-type or recombinant viruses.


Subject(s)
Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Plant Diseases/virology , Virome , Viruses/genetics , Viruses/isolation & purification , Base Sequence , Fungal Viruses/classification , Fungi/virology , Genome, Viral , Metagenomics , Phylogeny , Triticum/microbiology , Viruses/classification
11.
Viruses ; 13(11)2021 11 12.
Article in English | MEDLINE | ID: mdl-34835075

ABSTRACT

Partitiviruses are one of the most prevalent double-stranded RNA viruses that have been identified mostly in filamentous fungi and plants. Partitiviruses generally infect host fungi asymptomatically but infrequently exert significant effect(s) on morphology and virulence, thus being considered a potential source of biological control agents against pathogenic fungi. In this study, we performed a screening for mycoviruses of a collection of Thai isolates of rice fungal pathogen Rhizoctonia oryzae-sativae, a causal agent of rice aggregated sheath spot disease. As a result, 36% of tested isolates carried potentially viral double-stranded RNAs with sizes ranging from 2 to 3 kbp. By conventional cDNA library construction and RNA-seq, we determined six new alphapartitiviruses that infected three isolates: tentatively named Rhizoctonia oryzae-sativae partitivirus 1 to 6 (RosPV1-6). Furthermore, RT-PCR detection of each virus revealed their omnipresent nature in different R. oryzae-sativae isolates. Although virus-curing of basidiomycetous fungi is generally difficult, our repeated attempts successfully obtained virus-free (for RosPV1, RosPV2, and uncharacterized partitiviruses), isogenic strain of R. oryzae-sativae TSS190442. The virus-cured strain showed slightly faster colony growth on the synthetic media and severe symptom development on the rice sheath compared to its virus-infected counterpart. Overall, this study shed light on the distribution of partitiviruses in R. oryzae-sativae in a paddy environment and exemplified a virus-curing protocol that may be applicable for other basidiomycetous fungi.


Subject(s)
Basidiomycota/virology , Double Stranded RNA Viruses/isolation & purification , Fungal Viruses/isolation & purification , Oryza/microbiology , Plant Diseases/microbiology , Amino Acid Sequence , Basidiomycota/isolation & purification , Basidiomycota/pathogenicity , Double Stranded RNA Viruses/classification , Double Stranded RNA Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/genetics , Genome, Viral/genetics , Phylogeny , RNA, Viral/genetics , Thailand , Viral Proteins/genetics , Virulence
12.
Viruses ; 13(10)2021 10 08.
Article in English | MEDLINE | ID: mdl-34696456

ABSTRACT

A novel mycovirus named Fusarium oxysporum alternavirus 1(FoAV1) was identified as infecting Fusarium oxysporum strain BH19, which was isolated from a fusarium wilt diseased stem of Lilium brownii. The genome of FoAV1 contains four double-stranded RNA (dsRNA) segments (dsRNA1, dsRNA 2, dsRNA 3 and dsRNA 4, with lengths of 3.3, 2.6, 2.3 and 1.8 kbp, respectively). Additionally, dsRNA1 encodes RNA-dependent RNA polymerase (RdRp), and dsRNA2- dsRNA3- and dsRNA4-encoded hypothetical proteins (ORF2, ORF3 and ORF4), respectively. A homology BLAST search, along with multiple alignments based on RdRp, ORF2 and ORF3 sequences, identified FoAV1 as a novel member of the proposed family "Alternaviridae". Evolutionary relation analyses indicated that FoAV1 may be related to alternaviruses, thus dividing the family "Alternaviridae" members into four clades. In addition, we determined that dsRNA4 was dispensable for replication and may be a satellite-like RNA of FoAV1-and could perhaps play a role in the evolution of alternaviruses. Our results provided evidence for potential genera establishment within the proposed family "Alternaviridae". Additionally, FoAV1 exhibited biological control of Fusarium wilt. Our results also laid the foundations for the further study of mycoviruses within the family "Alternaviridae", and provide a potential agent for the biocontrol of diseases caused by F. oxysporum.


Subject(s)
Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fusarium/virology , Viruses, Unclassified/genetics , Viruses, Unclassified/isolation & purification , Fungal Viruses/classification , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA, Double-Stranded , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Viruses, Unclassified/classification
13.
Arch Virol ; 166(11): 3211-3216, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34495411

ABSTRACT

Fusarium oxysporum is a cosmopolitan plant pathogen that causes fusarium wilt and fusarium root rot in many economically important crops. There is still limited information about mycoviruses that infect F. oxysporum. Here, a novel mitovirus tentatively named "Fusarium oxysporum mitovirus 1" (FoMV1) was identified in F. oxysporum strain B2-10. The genome of FoMV1 is 2,453 nt in length with a predicted AU content of 71.6% and contains one large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF putatively encodes an RNA-dependent RNA polymerase (RdRp) of 723 aa with a molecular mass of 84.98 kDa. The RdRp domain of FoMV1 shares 29.01% to 68.43% sequence identity with the members of the family Mitoviridae. Phylogenetic analysis further suggested that FoMV1 is a new member of a distinct species in the genus Mitovirus.


Subject(s)
Fungal Viruses/genetics , Fusarium/virology , Genome, Viral , Phylogeny , RNA Viruses/genetics , Fungal Viruses/isolation & purification , Fusarium/pathogenicity , Open Reading Frames , Plant Diseases/microbiology , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Whole Genome Sequencing
14.
Arch Virol ; 166(11): 3229-3232, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34524536

ABSTRACT

The complete genome sequence of a double-stranded RNA (dsRNA) virus, Rhizoctonia solani dsRNA virus 11 (RsRV11), isolated from Rhizoctonia solani AG-1 IA strain 9-11 was determined. The RsRV11 genome is 9,555 bp in length and contains three conserved domains: structural maintenance of chromosomes (SMC) superfamily, phosphoribulokinase (PRK), and RNA-dependent RNA polymerase (RdRp). The RsRV11 genome has two non-overlapping open reading frames (ORFs). ORF1 is predicted to encode a 204.12-kDa protein that shares low but significant amino acid sequence similarity with a putative protein encoded by Rhizoctonia solani RNA virus HN008 (RsRV-HN008). ORF2 potentially encodes a 132.41-kDa protein that contains the conserved domain of the RdRp. Phylogenetic analysis indicated that RsRV11 clustered with RsRV-HN008 in a separate clade from other virus families. This implies that RsRV11 and RsRV-HN008 should be included in a new mycovirus taxon close to the family Megabirnaviridae and that RsRV11 is a new mycovirus.


Subject(s)
Fungal Viruses/genetics , Genome, Viral , Phylogeny , Rhizoctonia/virology , China , Fungal Viruses/isolation & purification , Open Reading Frames , RNA, Double-Stranded , Rhizoctonia/isolation & purification , Viral Proteins/genetics , Zea mays/microbiology
15.
Viruses ; 13(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34578448

ABSTRACT

Sunflowers (Helianthus annuus L.) are susceptible to multiple diseases in field production. In this study, we collected diseased sunflower leaves in fields located in South Dakota, USA, for virome investigation. The leaves showed visible symptoms on the foliage, indicating phomopsis and rust infections. To identify the viruses potentially associated with the disease diagnosed, symptomatic leaves were obtained from diseased plants. Total RNA was extracted corresponding to each disease diagnosed to generate libraries for paired-end high throughput sequencing. Short sequencing reads were assembled de novo and the contigs with similarities to viruses were identified by aligning against a custom protein database. We report the discovery of two novel mitoviruses, four novel partitiviruses, one novel victorivirus, and nine novel totiviruses based on similarities to RNA-dependent RNA polymerases and capsid proteins. Contigs similar to bean yellow mosaic virus and Sclerotinia sclerotiorum hypovirulence-associated DNA virus were also detected. To the best of our knowledge, this is the first report of direct metatranscriptomics discovery of viruses associated with fungal infections of sunflowers bypassing culturing. These newly discovered viruses represent a natural genetic resource from which we can further develop potential biopesticide to control sunflower diseases.


Subject(s)
Fungal Viruses/genetics , Helianthus/microbiology , Helianthus/virology , Plant Diseases/microbiology , Plant Diseases/virology , Plant Viruses/genetics , Virome , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Gene Expression Profiling , Genome, Viral , Microbiota , Phylogeny , Plant Leaves/microbiology , Plant Leaves/virology , Plant Viruses/classification , Plant Viruses/isolation & purification , Totivirus/classification , Totivirus/genetics , Totivirus/isolation & purification
16.
Viruses ; 13(7)2021 07 07.
Article in English | MEDLINE | ID: mdl-34372522

ABSTRACT

Eukaryotic circular single-stranded DNA (ssDNA) viruses were known only to infect plants and vertebrates until the discovery of the isolated DNA mycovirus from the fungus Sclerotinia sclerotiorum. Similar viral sequences were reported from several other sources and classified in ten genera within the Genomoviridae family. The current study reports two circular ssDNA mycoviruses isolated from the phytopathogen Botrytis cinerea, and their assignment to a newly created genus tentatively named Gemydayirivirus. The mycoviruses, tentatively named botrytis gemydayirivirus 1 (BGDaV1) and BGDaV2, are 1701 and 1693 nt long and encode three and two open reading frames (ORFs), respectively. Of the predicted ORFs, only ORF I, which codes for a replication initiation protein (Rep), shared identity with other proteins in GenBank. BGDaV1 is infective as cell-free purified particles and confers hypovirulence on its natural host. Investigation revealed that BGDaV1 is a target for RNA silencing and genomic DNA methylation, keeping the virus at very low titre. The discovery of BGDaV1 expands our knowledge of the diversity of genomoviruses and their interaction with fungal hosts.


Subject(s)
Botrytis/genetics , Botrytis/virology , DNA Viruses/genetics , DNA Viruses/isolation & purification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Open Reading Frames/genetics , Botrytis/pathogenicity , DNA Viruses/classification , DNA Viruses/pathogenicity , Fungal Viruses/classification , Fungal Viruses/pathogenicity , Genome, Viral , Host Microbial Interactions , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Viral Proteins/genetics , Virulence
17.
Arch Virol ; 166(10): 2859-2863, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34291341

ABSTRACT

Sclerotinia sclerotiorum ourmiavirus 17 (SsOV17) was isolated from the hypovirulent strain GF3 of Sclerotinia sclerotiorum. The genome of SsOV17 is 2,802 nt in length and contains a single long open reading frame (ORF) flanked by a short structured 5'-untranslated region (5'-UTR) (28 nt) and a long 3'-UTR (788 nt), respectively. The ORF encodes a protein with 663 amino acids and a predicted molecular mass of 75.0 kDa. A BLASTp search indicated that the protein encoded by SsOV17 is closely related to the putative RNA-dependent RNA polymerase (RdRp) of Sclerotinia sclerotiorum ourmiavirus 13 (71% identity). A multiple sequence alignment indicated that eight conserved amino acid motifs were present in the RdRp conserved region of SsOV17. Phylogenetic analysis demonstrated that SsOV17 clustered with members of the genus Botoulivirus.


Subject(s)
Ascomycota/virology , Fungal Viruses/classification , Plant Diseases/microbiology , RNA Viruses/classification , Amino Acid Motifs , Ascomycota/pathogenicity , Brassica napus/microbiology , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Genome, Viral/genetics , Open Reading Frames/genetics , Phylogeny , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Untranslated Regions/genetics
18.
Arch Virol ; 166(10): 2711-2722, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34313859

ABSTRACT

A unique capsidless virus with a positive-sense, single-stranded RNA genome (hadakavirus 1, HadV1), a member of the extended picorna-like supergroup, was isolated previously from the phytopathogenic fungus Fusarium oxysporum. Here, we describe the molecular and biological characterisation of a second hadakavirus strain from Fusarium nygamai, which has not been investigated in detail previously as a virus host. This virus, hadakavirus 1 strain 1NL (HadV1-1NL), has features similar to the first hadakavirus, HadV1-7n, despite having a different number of segments (10 for HadV1-1NL vs. 11 for HadV1-7n). The 10 genomic RNA segments of HadV1-1NL range in size from 0.9 kb to 2.5 kb. All HadV1-1NL segments show 67% to 86% local nucleotide sequence identity to their HadV1-7n counterparts, whereas HadV1-1NL has no homolog of HadV1-7n RNA8, which encodes a zinc-finger motif. Another interesting feature is the possible coding incapability of HadV1-1NL RNA10. HadV1-1NL was predicted to be capsidless based on the RNase A susceptibility of its replicative form dsRNA. Phenotypic comparison of multiple virus-infected and virus-free single-spore isolates indicated asymptomatic infection by HadV1-1NL. Less-efficient vertical transmission via spores was observed as the infected fungal colonies from which the spores were derived became older, as was observed for HadV1-7n. This study shows a second example of a hadakavirus that appears to have unusual features.


Subject(s)
Fusarium/virology , Genome, Viral/genetics , Positive-Strand RNA Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Phylogeny , Plant Diseases/microbiology , Positive-Strand RNA Viruses/classification , Positive-Strand RNA Viruses/isolation & purification , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , Ribonucleases/metabolism , Sequence Analysis, DNA , Species Specificity , Spores, Fungal/virology , Viral Proteins/genetics
19.
J Virol ; 95(17): e0039921, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34133887

ABSTRACT

Bacteriophages are considered the most abundant entities on earth. However, there are merely seven sequenced double-stranded RNA (dsRNA) phages, compared to thousands of sequenced double-stranded DNA (dsDNA) phages. Interestingly, dsRNA viruses are quite common in fungi and usually have a lifestyle of commensalism or mutualism. Thus, the classical protocol of using double-layer agar plates to characterize phage plaques might be significantly biased in the isolation of dsRNA phages beyond strictly lytic lifestyles. Thus, we applied a protocol for isolating fungal viruses to identify RNA phages in bacteria and successfully isolated a novel dsRNA phage, phiNY, from Microvirgula aerodenitrificans. phiNY has a genome consisting of three dsRNA segments, and its genome sequence has no nucleotide sequence similarity with any other phage. Although phiNY encodes a lytic protein of glycoside hydrolase, and phage particles are consistently released during bacterial growth, phiNY replication did not block bacterial growth, nor did it form any plaques on agar plates. More strikingly, the phiNY-infected strain grew faster than the phiNY-negative strain, indicating a mutualistic parasitic lifestyle. Thus, this study not only reveals a new mutualistic parasitic dsRNA phage but also implies that other virus isolation methods would be valuable to identify phages with nonlytic lifestyles. IMPORTANCE Viruses with dsRNA genomes are quite diverse and infect organisms in all three domains of life. Although dsRNA viruses that infect humans, plants, and fungi are quite common, dsRNA viruses that infect bacteria, known as bacteriophages, are quite understudied, and only seven dsRNA phages have been sequenced so far. One possible explanation for the rare isolation of dsRNA phages might be the protocol of the double-layer agar plate assay. Phages without strictly lytic lifestyles might not form plaques. Thus, we applied the protocol of isolating fungal viruses to identify RNA phages inside bacteria and successfully isolated a novel dsRNA phage, phiNY, with a mutualistic parasitic lifestyle. This study implies that dsRNA phages without strictly lytic lifestyles might be common in nature and deserve more investigations.


Subject(s)
Bacteriophages/physiology , Betaproteobacteria/virology , Fungal Viruses/physiology , Genome, Viral , Glycoside Hydrolases/metabolism , RNA, Double-Stranded/genetics , Symbiosis , Fungal Viruses/isolation & purification , Glycoside Hydrolases/genetics , Phylogeny
20.
Arch Virol ; 166(8): 2325-2331, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34057607

ABSTRACT

In this report, we describe the molecular characterization of two novel mycoviruses coinfecting the plant pathogenic fungus Nigrospora sphaerica, which were designated "Nigrospora sphaerica fusarivirus 1" (NsFV1) and "Nigrospora sphaerica partitivirus 1" (NsPV1). NsFV1 has an undivided genome measuring 6,147 nt, excluding the polyA tail, and was predicted to contain two nonoverlapping open reading frames (ORF1 and 2). The larger ORF1 encodes a polyprotein containing a conserved RNA-dependent RNA polymerase (RdRp) and a helicase domain that has functions related to RNA replication, and the smaller ORF2 encodes a putative protein with an unknown function. NsPV1 consists of two genome segments, which measure 1,796 bp and 1,455 bp in length. Each of the two dsRNAs has a single ORF, and they are predicted to encode proteins with homology to viral RdRps and coat proteins of members of the family Partitiviridae. Phylogenetic analysis indicated that NsFV1 is a member of the recently proposed family "Fusariviridae", while NsPV1 was determined to belong to the genus Gammapartitivirus in the family Partitiviridae. To the best of our knowledge, this report is the first to describe mycoviruses infecting N. sphaerica.


Subject(s)
Ascomycota/virology , Fungal Viruses/classification , Whole Genome Sequencing/methods , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Genome Size , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases/microbiology , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...